MARAVILHA DO UNIVERSO

MARAVILHA DO UNIVERSO
Contemple a Maravilha do Universo

sexta-feira, 29 de setembro de 2017

UMA VISÃO DUPLA

Visão dupla
A cerca de 95 milhões de anos-luz de distância, na constelação do Oitante, situa-se NGC 7098 uma galáxia espiral intrigante com vários grupos de estruturas duplas. 
O primeiro destes grupos é o duo de estruturas em forma de anel que se enrolam à volta do coração nebuloso da galáxia, os braços espirais de NGC 7098. Esta região central abriga uma segunda estrutura dupla: uma barra dupla.
NGC 7098 também desenvolveu estruturas chamadas ansas, visíveis sob a forma de traços pequenos e brilhantes situados em cada ponta da região central. As ansas são áreas visíveis de grande densidade e que normalmente tomam formas lineares, circulares ou em nó, podendo ser encontradas nas extremidades dos sistemas de anéis planetários, em nuvens difusas e, como é o caso de NGC 7098, em partes de galáxias que estão repletas de estrelas.
Esta imagem foi criada a partir de dados obtidos pelo instrumento FORS (FOcal Reducer and low dispersion Spectrograph), instalado no Very Large Telescope do ESO no Observatório do Paranal. Também está visível na imagem um conjunto de galáxias distantes, sendo a mais proeminente uma pequena galáxia espiral vista de perfil do lado esquerdo de NGC 7098, chamada ESO 048-G007.
Crédito: ESO

domingo, 24 de setembro de 2017

FAXINA ESTELAR NUM SISTEMA BEBÊ

Faxina num sistema estelar bebê
Esta imagem mostra o disco empoeirado que rodeia a estrela jovem isolada HD 169142. O Atacama Large Millimeter/submillimeter Array (ALMA) obteve esta imagem de alta resolução do disco, ao capturar os fracos sinais dos grãos de poeira milimétricos que o constituem. Os anéis são faixas espessas de poeira, separadas por acentuados espaços vazios.
Preparado para estudar a poeira e gás frios de sistemas como HD 169142, os olhos aguçados do ALMA têm revelado a estrutura de muitos sistemas estelares bebês com semelhantes cavidades e espaços vazios. Foram já propostas uma variedade de teorias para explicar estes sistemas — tais como turbulência causada por instabilidades magneto-rotacionais, ou fusão de grãos de poeira — mas a mais plausível é que estes espaços vazios pronunciados sejam causados por protoplanetas gigantes.
Quando os sistemas planetários se formam, o gás e a poeira coalescem para formar planetas. Estes planetas “limpam” depois de forma eficaz as suas órbitas dos restos de gás e poeira, levando este material a colocar-se em faixas bem definidas. Os espaços vazios pronunciados que vemos nesta imagem são consistentes com a presença de múltiplos protoplanetas  uma descoberta que está de acordo com outros estudos deste sistema feitos no óptico e no infravermelho.
A observação de discos protoplanetários empoeirados feita com o ALMA permite aos astrônomos investigar os primeiros passos da formação de planetas com o intuito de compreenderem melhor os caminhos evolutivos destes sistemas bebês.
Crédito: ALMA (ESO/NAOJ/NRAO)/ Fedele et al.

terça-feira, 19 de setembro de 2017

PROTO ESTRELA BRILHA INTERNAMENTE ALTERANDO A FORMA DA SUA MATERNIDADE ESTELAR

Protoestrela brilha intensamente alterando a forma da sua maternidade estelar
Esta imagem, obtida pelo Atacama Large Millimeter/submillimeter Array (ALMA), instalado no Chile, mostra poeira resplandescente no interior do proto aglomerado NGC 6334l. 
Com o auxílio do ALMA e do Submillimeter Array (SMA) instalado no Havaí, astrônomos estudaram esta nuvem de formação estelar situada na Nebulosa da Pata do Gato (NGC 6334) e aperceberam-se de que algo dramático ocorreu, o que levou à alteração da forma desta maternidade estelar num espaço de tempo surpreendentemente curto.
Sabe-se que as estrelas se formam no interior dos proto aglomerados, quando bolsões de gás se tornam tão densos que começam a colapsar sob o efeito da sua própria gravidade. À medida que o tempo passa, formam-se discos de poeira e gás em volta destas estrelas bebês, discos estes que deslocam material para as superfícies estelares, ajudando as estrelas a crescer.
No entanto, esta nova imagem do ALMA mostra uma protoestrela massiva, aninhada profundamente nesta maternidade estelar poeirenta, que está sofrendo um intenso surto de crescimento, muito provavelmente causado por uma avalanche de gás “caindo” na sua superfície. Este novo material “alimenta-a”, fazendo com que a protoestrela brilhe cem vezes mais intensamente do que anteriormente. Esta descoberta apoia a teoria de que estrelas jovens podem sofrer intensos surtos de crescimento, modificando assim o meio que as envolve.
Crédito: ALMA (ESO/NAOJ/NRAO); C. Brogan, B. Saxton (NRAO/AUI/NSF)

quinta-feira, 14 de setembro de 2017

ESO OBSERVA UMA ESPIRAL CELESTE DIFERENTE

Uma espiral celeste diferente
Embora esta imagem pareça ser o padrão de uma concha na praia, a espiral intrigante que aqui vemos é na realidade um fenômeno astronômico da natureza. 
O Atacama Large Millimeter/submillimeter Array (ALMA) obteve esta imagem de um sistema estelar binário, onde duas estrelas — LL Pegasi e a sua companheira — estão presas numa valsa estelar, orbitando em torno do centro de gravidade comum. A velha estrela LL Pegasi perde material gasoso de forma contínua, à medida que se transforma numa nebulosa planetária, sendo a forma em espiral bem marcada que observamos criada pelas duas estrelas que orbitam neste gás.
A espiral tem uma dimensão de vários anos-luz e enrola-se com uma regularidade extraordinária. Baseados na taxa de expansão do gás em espiral, os astrônomos estimam que uma nova “camada” aparece a cada 800 anos — aproximadamente o mesmo tempo que as estrelas demoram a completar uma órbita em torno uma da outra.
LL Pegasi foi bem observada pela primeira vez há cerca de 10 anos, quando o Telescópio Espacial Hubble da NASA/ESA obteve uma imagem da sua estrutura em espiral quase perfeita. Foi a primeira vez que se descobriu uma estrutura espiral rodeando uma estrela velha. Agora, observações do ALMA, das quais esta imagem mostra apenas um “corte”, deram-nos uma dimensão extra ao revelar a geometria 3D perfeitamente ordenada da estrutura em espiral. Uma vista completa encontra-se disponível neste vídeo 3D.
Uma imagem adicional mostra uma composição de dados ALMA e Hubble.

sábado, 9 de setembro de 2017

MEDIÇÕES DE MATÉRIA ESCURA SÃO OBSERVADAS EM ABELL 262, ABELL 383, ABELL1413,E ABELL 2390


Um estudo novo das observações de Chandra de 13 conjuntos da galáxia testou as propriedades da matéria escura.A matéria escura é uma substância misteriosa e invisível que constitui a maioria da matéria no Universo.
Os resultados mais recentes sugerem que a matéria escura pode ter propriedades ondulatórias devido à mecânica quântica.O modelo que foi testado com dados Chandra é conhecido como matéria escura "fuzzy".
Os astrônomos usaram dados do Observatório Chandra de raios-X da NASA para estudar as propriedades da matéria escura , a substância misteriosa e invisível que compõe a maioria da matéria no universo. O estudo, que envolve 13 aglomerados de galáxias , explora a possibilidade de que a matéria escura pode ser mais "fuzzy" do que "fria", talvez até aumentando a complexidade que envolve esse enigma cósmico.
Durante várias décadas, os astrónomos conhecem a matéria escura . Embora não possa ser observada diretamente, a matéria escura interage através da gravidade com a matéria normal, radiante (isto é, qualquer coisa feita de prótons, nêutrons e elétrons empacotados em átomos). Capitalizando essa interação, os astrônomos estudaram os efeitos da matéria escura usando uma variedade de técnicas, incluindo observações do movimento de estrelas em galáxias, o movimento de galáxias em galáxias e a distribuição de raios-X que emitem gás quente em aglomerados de galáxias . A matéria escura também deixou uma marca na radiação deixada do Big Bang há 13,8 bilhões de anos.
No entanto, os astrônomos têm lutado durante décadas para entender as propriedades detalhadas da matéria escura. Em outras palavras, eles gostariam de saber como a matéria escura se comporta em todos os ambientes e, em última instância, do que é feito.
O modelo mais popular assume que a matéria escura é uma partícula mais massiva do que um próton que é "frio", o que significa que ele se move a velocidades muito menores do que a velocidade da luz. Este modelo tem sido bem sucedido em explicar a estrutura do universo em escalas muito grandes, muito maiores que as galáxias, mas tem problemas em explicar como a matéria é distribuída nas escalas menores das galáxias.
Por exemplo, o modelo da matéria escura fria prevê que a densidade da matéria escura no centro das galáxias é muito maior do que nas regiões circunvizinhas próximas ao centro. Como a matéria normal é atraída pela matéria escura, ela também deve ter um forte pico de densidade no centro das galáxias. No entanto, os astrônomos observam que a densidade da matéria escura e normal no centro das galáxias é muito mais uniformemente espalhada. Outra questão com o modelo de matéria escura fria é que ele prevê um número muito maior de galáxias pequenas orbitando em torno de galáxias como a Via Láctea do que os astrônomos realmente vêem.
Para resolver esses problemas com o modelo de matéria escura fria, os astrônomos vêm modelos alternativos onde a matéria escura tem propriedades muito diferentes. Um desses modelos aproveita o princípio da mecânica quântica de que cada partícula subatômica tem uma onda associada a ela. Se a partícula da matéria escura tiver uma massa extremamente pequena, cerca de dez mil trilhões de trilhões de vezes menor do que a massa de um elétron, seu comprimento de onda correspondente será de cerca de 3.000 anos-luz . Esta distância de um pico da onda para outro é de cerca de um oitavo da distância entre a Terra e o centro da Via Láctea. Em contraste, o comprimento de onda mais longo da luz, uma onda de rádio, é apenas alguns quilômetros de comprimento.
Ondas de diferentes partículas nessas grandes escalas podem se sobrepor e interferir umas com as outras como ondas em um lago, agindo como um sistema quântico em escalas galácticas em vez de atômicas.
O grande comprimento de onda da onda das partículas significa que a densidade da matéria escura no centro das galáxias não pode ser fortemente atingida. Portanto, para um observador fora de uma galáxia, essas partículas pareceriam fuzzy se pudessem ser detectadas diretamente, de modo que este modelo foi chamado de "matéria escura fuzzy". Porque a matéria normal é atraída pela matéria escura, ela também se espalhará por grandes escalas. Isto explicaria naturalmente a falta de um pico forte na densidade da matéria no centro das galáxias.
Este modelo simples foi bem sucedido em explicar a quantidade ea posição da matéria escura em galáxias pequenas. Para galáxias maiores, um modelo mais complicado de matéria escura difusa tem sido necessário. Neste modelo, concentrações maciças de matéria escura podem levar a múltiplos estados quânticos (chamados "estados excitados"), nos quais as partículas de matéria escura podem ter diferentes quantidades de energia, semelhante a um átomo com elétrons em órbitas de energia mais alta. Esses estados excitados mudam a forma como a densidade da matéria escura varia com a distância do centro do aglomerado de galáxias.
Em um novo estudo, uma equipe de cientistas usou as observações de Chandra do gás quente em 13 galáxias para ver se o modelo de matéria escura fuzzy funciona em escalas maiores que a das galáxias. Eles usaram os dados de Chandra para estimar a quantidade de matéria escura em cada cluster e como a densidade dessa matéria varia com a distância do centro do aglomerado de galáxias.
O gráfico mostra quatro dos 13 aglomerados de galáxias utilizados no estudo. Os clusters são, começando no canto superior esquerdo e indo no sentido horário, Abell 262, Abell 383, Abell 1413 e Abell 2390. Em cada uma dessas imagens, os dados de raios-X de Chandra são rosa, enquanto os dados ópticos são vermelho, verde e azul.
Como com os estudos de galáxias, o modelo mais simples de matéria escura fuzzy - onde todas as partículas têm a menor energia possível - não concordou com os dados. No entanto, eles descobriram que o modelo em que as partículas tinham diferentes quantidades de energia - os "estados excitados" - concordavam com os dados, de fato, o modelo de matéria escura fuzzy pode igualar as observações destes 13 aglomerados de galáxias tão bem ou Ainda melhor do que um modelo baseado na matéria escura fria.
Este resultado mostra que o modelo de matéria escura fuzzy pode ser uma alternativa viável à matéria escura fria, mas é necessário mais trabalho para testar esta possibilidade. Um efeito importante dos estados excitados é dar ondulações, ou oscilações, na densidade da matéria escura em função da distância do centro do aglomerado. Isto produziria ondulações na densidade da matéria normal. A magnitude esperada dessas ondulações é menor do que as incertezas atuais nos dados. Um estudo mais detalhado é necessário para testar esta previsão do modelo.
Um documento descrevendo esses resultados foi recentemente aceito para publicação no Monthly Notices da Royal Astronomical Society e está disponível on-line . Os autores são Tula Bernal (Instituto Politécnico Nacional, Cidade do México), Victor Robles (Universidade da Califórnia, Irvine) e Tonatiuh Matos (Instituto Politécnico Nacional).

segunda-feira, 4 de setembro de 2017

ESO OBSERVA UMA SUPER BOLHA CÓSMICA

Superbubble LHA 120-N 44 in the Large Magellanic Cloud
O Very Large Telescope do ESO capturou esta imagem extraordinária da nebulosa que envolve o aglomerado estelar NGC 1929 situado na Grande Nuvem de Magalhães, uma galáxia satélite da nossa própria Via Láctea. 
Esta maternidade estelar é dominada por o que os astrônomos chamam uma superbolha. Este objeto está sendo esculpido tanto pelos ventos ejetados pelas estrelas brilhantes jovens como pelas ondas de choque originárias das explosões de supernovas.
A Grande Nuvem de Magalhães é uma pequena galáxia vizinha da Via Láctea. Possui muitas regiões onde nuvens de gás e poeira estão formando novas estrelas. Esta nova imagem do Very Large Telescope do ESO mostra em grande plano uma dessas regiões, situada em torno do aglomerado estelar NGC 1929. Esta nebulosa é oficialmente conhecida por LHA 120-N 44, ou apenas pelo diminutivo N 44.
As estrelas jovens quentes do NGC 1929 estão emitindo radiação ultravioleta extremamente intensa, o que faz com que o gás em sua volta brilhe. Este efeito põe em evidência a superbolha, uma vasta concha de matéria com um tamanho de cerca de 325 por 250 anos-luz. Em termos de comparação importa dizer que a estrela mais próxima do Sol se encontra a uma distância de pouco mais de quatro anos-luz.
A superbolha N 44 formou-se devido à combinação de dois processos. Primeiro, ventos estelares - correntes de partículas carregadas emitidas por estrelas muito quentes de grande massa situadas no centro do aglomerado - limparam a região central. Seguidamente, estrelas de grande massa do aglomerado explodiram como supernovas criando ondas de choque e empurrando o gás para fora formando-se assim uma bolha brilhante.
Embora a superbolha seja formada por forças destrutivas, estrelas novas estão se formando em torno dos limites onde o gás está sendo comprimido. Tal como reciclagem em escala cósmica, esta próxima geração de estrelas trará vida nova ao NGC 1929.
A imagem foi criada pelo ESO a partir de dados observacionais identificados por Manu Meijas, da Argentina, que participou no concurso de astrofotografia Tesouros Escondidos do ESO 2010. A competição foi organizada pelo ESO em Outubro e Novembro de 2010, e foi dirigida a qualquer pessoa com gosto em produzir imagens bonitas do céu ncturno utilizando dados astronômicos obtidos com telescópios profissionais.